
AFRL-IF-WP-TR-2004-1505

POWER ANALYZER FOR POCKET
COMPUTING (PAPC)

Dr. Trevor Mudge, Nam Sung Kim, Jeffrey Ringenberg, and
Taeho Kgil

University of Michigan
222B EECS, 1301 Beal Avenue
Ann Arbor, MI 48109-2122

JANUARY 2004

Final Report for 18 May 2000 – 30 September 2003

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

Using government drawings, specifications, or other data included in this document for any
purpose other than government procurement does not in any way obligate the U.S. Government.
The fact that the government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey and rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report has been reviewed by the Office of Public Affairs (ASC/P A) and is releasable to the
National Technical Infonnation Service (NTIS). At NTIS, it will be available to the general
public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Copies of this report should not be returned unless return is required by security considerations,
contractual obligations, or notice on a specific document.

-
STEPHEN L BENNING
Team Lead
AFRL/IFSC

---b~..v~ Q Q q~-&", ~

DA Vill A. ZANN, Chief
Advanced Architecture and Integration Branch
Infonnation System Division

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

January 2004 Final 05/18/2000 – 09/30/2003
5a. CONTRACT NUMBER

F33615-00-C-1678
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

POWER ANALYZER FOR POCKET COMPUTING (PAPC)

5c. PROGRAM ELEMENT NUMBER
69199F

5d. PROJECT NUMBER

ARPI
5e. TASK NUMBER

FS

6. AUTHOR(S)

Dr. Trevor Mudge, Nam Sung Kim, Jeffrey Ringenberg, and Taeho Kgil

5f. WORK UNIT NUMBER

 A2
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

University of Michigan
222B EECS, 1301 Beal Avenue
Ann Arbor, MI 48109-2122

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL/IFSC Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7334

DARPA/IPTO
3701 Fairfax Drive
Arlington, VA 22203-1714 11. SPONSORING/MONITORING AGENCY

REPORT NUMBER(S)
 AFRL-IF-WP-TR-2004-1505

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This contract was funded under BAA #00-99-37, POWER AWARE COMPUTING AND COMMUN ICATION
(PACC) by DARPA/IPTO. Report contains color.

14. ABSTRACT
Under this contract researchers at the Universities of Michigan and Colorado have developed an innovative and practical
power evaluation tool, Power Analyzer, suitable for calculating power consumption for complete computer systems.
Power Analyzer will be initially targeted to pocket computers where computing and communication place strong demands
on the portable power supply.

15. SUBJECT TERMS

Low power computing, Computer architecture, Simulation, ARM computers, IPAQ personal digital assistant
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 62
 Marvin Soraya
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-4709 x3177
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

0 of 0

1. Introduction..1

2. Infrastructure for Microarchitectural Power Simulation..4
2.1 Where to Get the Source Code.. 5
2.2 How to Compile .. 5
2.3 How to Run the Simulator... 5

3. MOSFET Capacitance Component ...8
3.1 Model .. 8
3.2 Implementation.. 9

4. Interconnect Capacitance and Resistance ..13
4.1 Models... 13
4.2 Implementation.. 15

5. General Circuits ...17
5.1 Models... 17
5.2 Implementation.. 20

6. Memory Power Model ...21
6.1 Models... 21
6.2 Implementation.. 22
6.3 Calibration... 26

7. Datapath and Execution Unit ...31
7.1 Implementation.. 31
7.2 Calibration... 32

8. Clock Distribution Tree ...34
8.1 Models... 34
8.2 Implementation.. 38

9. I/O ..40
9.1 Model .. 40
9.2 Implementation.. 43

10. Conclusion ...45

Appendix A - Sim-iPAQ..46

References...50

Publications...53

roushrv
 iii

roushrv
 TABLE OF CONTENTS

1. Introduction
Power consumption has quickly become a key design constraint in microprocessor designs,

from low-end embedded processors to high-end, high-performance systems. The embedded pro-

cessors found in PDAs and cell phones must utilize energy efficient designs, as their energy pay-

load is limited by form factor and weight constraints. With battery power density improving only

at a rate of about 5% per year, increase in battery lifetime must come about through improvements

in the energy efficiency of system components. To create power-sensitive designs, accurate power

estimation combined with architectural or system level performance simulation is a key design

tool that permits rapid early design studies that gauge trade-offs between performance and power.

Recently, several microarchitectural-level power estimation tools have been introduced [1,

2, 3] in academia, and they have been widely adopted for use in design studies that require power

modeling. In all of these tools, microprocessor power is estimated by accruing power as estimated

by the power models for each access to microarchitectural functional blocks. In Wattch [1],

Brooks et al. extended CACTI, an access and cycle time model for on-chip caches [4], to model

the power dissipation of on-chip storage blocks such as caches, register files, and branch target

buffers. The model used in Wattch resorts to a fast approximation that is well suited for high-end

designs containing large and complex memory, but the power consumption of datapath and exe-

cution blocks is estimated by a single, per-access value, which is not scalable for the technology

nor different circuit styles. Although their approach is a good approximation for the high-end

application domain, we believe that embedded designs require more accurate modeling based on

the specific switching activity within each execution block.

In SimplePower [2], Vijaykrishnan et al. incorporated register-transfer level (RTL) power

models based on look-up tables (LUT) into a microarchitectural simulator. Each LUT contains a
1 of 54

set of pre-characterized power dissipations for a datapath component, and each entry of the LUT,

indexed by the Hamming distance between subsequent input vector pairs, returns the estimated

power of the component [5]. The objective of this tool is to provide a framework to quickly eval-

uate a range of architectural and algorithmic trade-offs during the early design stages. To this end,

it targets a reference processor design for the pre-computation of capacitance tables. This refer-

ence design, while accurate enough for the purpose of trade-off analysis, is not easily modifiable

to describe specific alternative designs that may have different datapath widths, smaller feature

sizes, or different technologies. On the other hand, an evaluation of power dissipation in later

design stages would obviously benefit from referencing the specific design under development.

Those microarchitectural-level power modeling tools have been invaluable in giving computer

architects the insights necessary to develop first-generation microarchitectural power optimiza-

tions. However, a rapidly changing technology landscape combined with increasingly complex

microarchitectural features has brought about an erosion in the fidelity of existing power models.

In this report, we outline the methodology behind the Sim-Panalyzer program. It is an aug-

mentation to the SimpleScalar performance simulator that allows the user to estimate power con-

sumption. It is broken out into several components that model distinct parts of a computer: cache

power models; datapath and execution unit power models; clock tree power models; and I/O

power models. These power models can be configured into an augmented SimpleScalar simulator

that will then produce power consumption figures.

There are a number of artifacts in SimpleScalar that can cause the event counting needed to

calculate dynamic power. These artifacts are discussed in [27]. Our power analyzer program, Sim-

Panalyzer, accounts for these.
2 of 54

The rest of the report is divided as follows. Section 2 details the infrastructure and explains

how to use Sim-Panalyzer. Sections 3 through 5 provide some background for our approach to

modeling MOSFETs, interconnect, and circuits in general. Sections 6 through 9 apply these mod-

eling techniques to cache power, datapath and execution unit power, clock tree power, and I/O

power, respectively. Section 10 adds some concluding remarks. The appendix on Sim-iPAQ is

included because it represents a typical low power platform, and it was developed as part of the

same project that supported the development of Sim-Panalyzer. Finally, the Publications section

lists papers that were written with partial support of this project.
3 of 54

2. Infrastructure for Microarchitectural Power Simulation
Sim-Panalyzer is an infrastructure for microarchitectural power simulation. It is imple-

mented on top of “sim-outorder”, a component within the SimpleScalar [6] simulator. To mini-

mize the modification of the original “sim-outorder.c”, we implemented minimum interfaces to

gather microarchitectural activities such as cache accesses. Originally, this project was targeted

for the ARM instruction set architecture (ISA) in which there are no complex microarchitectural

block such as an instruction queue (IQ), re-order buffer (ROB), branch predictor, floating-point

unit, etc. However, now we also provide a platform for the Alpha ISA. Our main focus is on basic

microarchitectural blocks and major power dissipation sources such as clock distribution trees,

external I/O, on-chip memories, and execution blocks.

The user must specify an effective switching capacitance per access, which is used to com-

pute the energy dissipation of each microarchitectural block. Sim-Panalyzer computes the energy

dissipation with the switching capacitance multiplied by the number of microarchitectural

accesses. A different scheme is applied for external I/O accesses; we provide a more detailed

transaction model to count I/O pin switches in a cycle accurate way. We also provide various rou-

tines and parameters to guide the user to estimate the effective switching capacitance per access of

each block. Those routines are technology scalable. Thus, we provide usages and examples on

how to port different technologies into our infrastructure.

In addition to these features, we provide a power modeling methodology and library to sup-

port more sophisticated and accurate power models. In the library, we provide basic building

blocks for the embedded logic simulator and switching capacitance extraction for CMOS gates.

The logic simulator collects the number of switchings in each internal node of the target circuit or

functional block and the capacitance extractor estimates the switching capacitance of each node.
4 of 54

This library supports hierarchical implementations of functional blocks. Thus, the users can re-

use the previously implemented sub-blocks to build more complex functional blocks.

2.1 Where to Get the Source Code

Source code can be downloaded from our website. Go to it at http://www.eecs.umich.edu/~pana-

lyzer, and click on the link to Sim-Panalyzer 2.0. The source code, “sim-panalyzer-2.0.tar.gz”, is a

compressed tar ball file.

The tar ball version has been created in a Linux x86 environment. We have not tested our

code for other operating systems and target machines.

2.2 How to Compile
Untar “sim-panalyzer-2.0.tar.gz” into your install directory. Sim-Panalyzer has currently

been compiled using gcc 3.2. Other gcc versions have not been tested thoroughly, therefore we

recommend that you compile with this version of gcc. We compiled the source code using GN

make. ‘make sim-panalyzer’ generates a binary for the simulator. Go to the root directory for each

version ‘./Implementations/targetmachine’ and execute this command. This should generate the

executable file ‘sim-panalyzer’. For simple tests you can execute small programs under the “./

Implementations/targetmachine/tests” directory. These are provided from the simplescalar toolset.

Sample tools used to extract effective capacitance for various functional blocks can be built

by going to the ‘./pmodel/’ directory and executing make.

2.3 How to Run the Simulator
We tried to decouple the power related configurations from the architectural configurations.

To simplify use, we have created a separate script file that parses the cmd file. The format for a

cmd file is similar to a Microsoft Windows ini file. We divide the configuration variables into sec-

tions and parse through these sections to generate an appropriate configuration for our simulator.
5 of 54

An example of a cmd file is shown in Figure 1. Power configurations can be given as fol-

lows below.

The [Component] section that is shown in the beginning of Figure 1 represents the compo-

nents we intend to analyze for power. Currently the components we support are Caches, Branch

[Component]
AIO
DIO
IL1 Cache
DL1 Cache
IL2 Cache
DL2 Cache
ITLB
DTLB
Branch_Predictor
Bimodel
Level1
Level2
BTB
RAS
IRF
FPRF
Random Logic
Clock

[Global]
supply_voltage=1.8
frequency=200

[AIO]
frequency=200
IO_voltage=3.3
numberofbufferstages=5
microstrip length=10
external load=1

[DIO]
frequency=200
IO_voltage=3.3
numberofbufferstages=5
microstrip length=10
external load=1

Figure 1: Example of cmd file
6 of 54

Target Buffers, Branch Predictors, Register files, Clock Trees & Random Logic. Based on the

chosen components in the [Component] section we define the configuration variables in the fol-

lowing subsections. For example, the [AIO], which configures the address IO pads, has the

parameters “frequency” for the bus frequency, “IO_voltage” to describe the supply voltage for the

IO pad, “Buffer ratio” for buffer sizing, “microstrip length” for modeling the PCB, and finally

“external load” to model the load that is connected to this IO. “test_arm.cmd” &

“test_alpha.cmd”, which are located in the source code, are template command files the user can

use as a reference.

It is important to note that in the cmd file, we assume capacitance to be in pF, time unit to be

in ps, frequency to be in MHz, and voltage to be in V.

The power configurations are then integrated with the architectural configurations and cre-

ate a single configuration file. We provide architectural templates for a 4-wide issue Alpha micro-

processor and the SA1100 StrongARM. Power configuration templates are also provided for these

two microprocessors in the “./cmd_files/” directory. The typical method for executing Sim-Pana-

lyzer would be executing the gen_cfg_<target machine>.pl script and then using the generated

output file as the configuration file for Sim-Panalyzer.

> gen_cfg_<target machine>.pl <architectural config filename> <PA cmd filename>

>sim-panalyzer -config <configuration filename> <executing program> <program param-

eters>
7 of 54

3. MOSFET Capacitance Component
3.1 Model

For accurate dynamic power estimation of a circuit, it is important to understand the intrin-

sic capacitance components of a transistor, because the dynamic power dissipation is estimated

based on those capacitance values and the activity ratio of the transition nodes. Figure 2 shows the

intrinsic capacitance components in the transistor (or MOSFET). In Figure 2-(a), G, B, S, D nodes

represent gate, body, source, and drain. CJ and CJSW in Figure 2-(b) represent the junction bottom

area and sidewall capacitance. LCH, WCH, LSD, and WSD represent the channel length and width,

and junction length and width of the transistor. In deep sub-micron technology, most of the

dynamic power dissipation is due to the charging and discharging of gate and source/drain capac-

itance during each transition. Therefore, we need an accurate, yet simple model to estimate these

capacitance components accurately for our power estimation technique. The gate capacitance can

be computed as follows [7]:

(1)

where Cpoly, Covlp, and XL are gate poly capacitance per unit area and gate overlap (with source

and drain) capacitance per unit length, and gate overlap length, respectively, see the SPICE

parameters specified in [8]. Moreover, LCH is usually fixed to be the minimum channel length of

Figure 2: The intrinsic capacitance components in a transistor.

(a) lateral view (a) top view

LCH
Csb Cdb

Cgs Cgd

Cgb

S
CJ CJ

CJswCJsw

WCH

D

G

B

XL

LSD

WSD

LCH
Csb Cdb

Cgs Cgd

Cgb

S
CJ CJ

CJswCJsw

WCH

D

G

B

XL

LSD

WSD

Cgate Cpoly LCH 2XL∠() Covlp+×() WCH×≅
8 of 54

the technology for digital circuits, thus the only unknown variable in the expression is the channel

width WCH. For the computation of source and drain capacitances we use:

(2)

where AD = LSD×WSD is the drain area and PD = 2×(LSD+WSD) is the drain perimeter. AD and

PD can usually be extracted from the physical layout. Alternatively, it is possible to obtain a

rough estimate based on the design rule set of the target technology and the design structure: LSD

and WSD can be approximated as 3×L and W for small size devices.

3.2 Implementation
In Sim-Panalyzer, technology specific parameters are specified in “technology.h”. Table 1

summarizes the TSMC 0.18µm technology parameters used in “technology.h”. All those parame-

ters were obtained from MOSIS parametric test results for TSMC 0.18µm CMOS runs [8]. If

users need to run experiments for different technologies, they can update “technology.h” accord-

ingly. Figure 3 shows part of a MOSIS parametric test for a TSMC 0.18µm CMOS run. In the

CD AD() CJ× PD CJSW×+=

Table 1: Technology parameters.

Notation Physical property Definition in “technology.h” Sample value

LCH Minimum channel length for the
defined technology LCH 0.18µm

XL Gate (poly) overlap length XL 0.02µm

Cpoly
Gate (poly) capacitance per unit

area
CPOLY_NDIFF (NMOS) 8460aF/µm2

CPOLY_PDIFF (PMOS) 8250aF/µm2

Covlp

Gate (poly) overlap (with source
and drain) capacitance per unit

length

COVLP_NDIFF (NMOS) 860aF/µm

COVLP_PDIFF (PMOS) 662aF/µm

CJ
Source/drain junction capaci-

tance per unit area
CJ_NDIFF 970aF/µm2

CJ_PDIFF 1171aF/µm2

CJSW
Source/drain junction side-wall

capacitance per unit length
CJSW_NDIFF 261aF/µm
CJSW_PDIFF 225aF/µm

LSD Source/drain minimum length LSD 0.54/µm
9 of 54

Figure 3: MOSIS parametric test results for a TSMC 0.18µm CMOS run.

PROCESS PARAMETERS N+ P+ POLY PLY+BLK MTL1 MTL2 N+BLK UNITS
 Sheet Resistance 6.8 7.7 8.0 326.2 0.08 0.08 61.8 ohms/sq
 Contact Resistance 9.6 10.2 8.9 4.87 ohms
 Gate Oxide Thickness 41 angstrom

PROCESS PARAMETERS MTL3 MTL4 MTL5 MTL6 POLY_HRI N_W UNITS
 Sheet Resistance 0.08 0.07 0.07 0.03 932 ohms/sq
 Contact Resistance 9.74 14.38 18.98 21.32 ohms

COMMENTS: BLK is silicide block.

CAPACITANCE PARAMETERS N+ P+ POLY M1 M2 M3 M4 M5 M6 M5P N_W UNITS
 Area (substrate) 981 1142 104 38 19 13 8 -- 3 75 aF/um^2
 Area (N+active) 8460 53 20 14 11 9 8 aF/um^2
 Area (P+active) 8258 aF/um^2
 Area (poly) 61 17 10 7 5 4 aF/um^2
 Area (metal1) 39 15 9 7 5 aF/um^2
 Area (metal2) 39 14 9 6 aF/um^2
 Area (metal3) 39 15 9 aF/um^2
 Area (metal4) 41 14 aF/um^2
 Area (metal5) 37 987 aF/um^2
 Area (no well) 147 aF/um^2
 Fringe (substrate) 252 210 18 59 53 41 24 -- aF/um
 Fringe (poly) 69 38 28 23 20 17 aF/um
 Fringe (metal1) 59 35 22 19 aF/um
 Fringe (metal2) 53 35 28 23 aF/um
 Fringe (metal3) 51 35 28 aF/um
 Fringe (metal4) 56 36 aF/um
 Fringe (metal5) 55 aF/um
 Overlap (N+active) 860 aF/um
 Overlap (P+active) 662 aF/um

T3AZ SPICE BSIM3 VERSION 3.1 PARAMETERS
SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8

* DATE: Dec 17/03
* LOT: T3AZ WAF: 3097
* Temperature_parameters=Default
.MODEL CMOSN NMOS (LEVEL = 49
+VERSION = 3.1 TNOM = 27 TOX = 4.1E-9
+XJ = 1E-7 NCH = 2.3549E17 VTH0 = 0.3665129
+K1 = 0.5924639 K2 = 3.654968E-3 K3 = 1E-3
+K3B = 3.6779438 W0 = 1E-7 NLX = 1.972849E-7
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 1.1143034 DVT1 = 0.3041866 DVT2 = 0.0441263
+U0 = 261.4948585 UA = -1.479128E-9 UB = 2.465229E-18
+UC = 6.659312E-11 VSAT = 1.033566E5 A0 = 2
+AGS = 0.4404112 B0 = 3.908023E-8 B1 = 5E-6

. .

. .

. .
10 of 54

results, process parameters such as sheet and contact resistance, capacitance parameters, and

SPICE parameters can be seen. In particular, the capacitance parameters are used to build Table 1.

For example, to estimate poly (gate) capacitance over the N+ active area — simply poly used to

build NMOS — per unit area, we should lookup the intersecting number from the “POLY” col-

umn and the “Area (N+active)” row. This is how “CPOLY_NDIFF” is obtained for 0.18µm tech-

nology in Table 1; each layer’s capacitance is dependent on the bottom layer connected to ground

(GND).

To support transistor-level modeling, two basic data structures are provided in Figure 4.

“channel_t” represents transistor channel type — “PCH” for p-type and “NCH” for n-type chan-

nel. The n- and p-type channels are used to build NMOS and PMOS, respectively. The structure

“cmos_t” contains the transistor width for a pair of complementary PMOS — “WPCH” — and

NMOS — “WNCH” transistors.

Figure 4: Basic data structure for transistor capacitance estimation in “technology.h”.

/* channel type*/
typedef enum {PCH /* PMOS */, NCH /* NMOS */} channel_t;

/* cmos gate transistor sizes */
typedef struct {
 double WPCH; /* PMOS transistor channel width */
 double WNCH; /* NMOS transistor channel width */
} cmos_t;
11 of 54

Table 2 shows the corresponding functions in “technology.c”, calculating both Cgate and CD.

Those functions are fundamental routines to build a power model for more complex circuits or

functional blocks.

Table 2: Basic transistor capacitance component estimation functions in “technology.c”.

Function Name
Argument Return

Data-type Name Property Data-type

estimate_MOSFET_CG
channel_t channel transistor channel type

double
double WCH transistor width

estimate_MOSFET_CSD
channel_t channel transistor channel type

double
double WCH transistor width
12 of 54

4. Interconnect Capacitance and Resistance
4.1 Models

There are two ways to estimate the interconnect capacitance and resistance. One way is to

use the sheet resistance for each interconnect layer and capacitance parameters specified in Figure

3. However, it is complicated to determine which layer should be used for the interconnect esti-

mation; this requires significant knowledge of the circuit layouts and other applicable design fea-

tures. The other way is to use the Berkeley Predictive Technology Model (BPTM) [9].

The BPTM estimates the interconnect capacitance and resistance for the given interconnect

material and dimensions, and dielectric material between the layers. The total interconnect capac-

itance consists of Cg — area and fringe capacitance to the underlying plane and Cc — coupling

capacitance to the adjacent interconnects. Those capacitance components are estimated by:

(3)

(4)

where w, s, t, and h represent width, space, thickness, and height of the interconnect and those

models are accurate in 0.16 < w < 2, 0.16 < s < 10, 0.15 < t < 1.2, 0.16 < h < 2.7 ranges, see Figure

5 for the dimensions of the interconnect model.

For global interconnect, which is usually the top interconnect layer, the total interconnect

capacitance Ct is modeled by:

(5)

Cg ε w
h
---- 2.2 s

s 0.7h+
-------------------⎝ ⎠

⎛ ⎞ 2.2
1.2 2

s 1.5h+
-------------------⎝ ⎠

⎛ ⎞ 0.76 t
t 4.5h+
------------------⎝ ⎠

⎛ ⎞ 0.12
⋅+ +=

Cc ε 1.4 t
s
-- s∠

s 8.0h+
-------------------⎝ ⎠

⎛ ⎞exp⋅ ⋅ 2.4 w
w 0.3+
-----------------⎝ ⎠

⎛ ⎞ 0.26 h
h 9.0+
----------------⎝ ⎠

⎛ ⎞ 0.75 2s∠
s 6h+
--------------⎝ ⎠

⎛ ⎞exp⋅+=

Ct 2 Cc Cg+×=
13 of 54

assuming that there are three adjacent interconnects in the left, right, and bottom sides of the inter-

connect. Hence, Ct becomes a sum of Cg and Cc multiplied by two. However, for local and inter-

mediate interconnects, there is another layer on top of the interconnect. This doubles Cg in the

total interconnect capacitance equation. Therefore, the total interconnect capacitance Ct becomes:

(6)

Caveat: both the coupling and ground interconnect capacitance is sensitive to the space between

the adjacent interconnects. Therefore, users should apply the interconnect capacitance model

appropriately depending on the spacing and the existence of the adjacent interconnect.

Depending on the interconnect material, the resistivity is different. For instance, Cu (copper)

and Al (aluminum) have 2.2 and 3.3 Ω/cm for resistivity, respectively. The interconnect resistance

for the given resistivity and dimensions is estimated by:

(7)

where ρ is the resistivity of the interconnect material.

Figure 5: The dimensions of the interconnect model.

t

w

h

s

Ct 2 Cc 2 C× g+×=

R ρ l⋅
w t⋅
----------=
14 of 54

4.2 Implementation
In Sim-Panalyzer, we provide the interconnect capacitance and resistance estimation func-

tions in “technology.c”, see Table 3 for the provided functions. In Table 3,

“estimate_interconnect_CG” and “estimate_interconnect_CC” estimate Cg and Cc capacitance in

(3) and (4), respectively for the interconnect capacitance. Depending on the layer and the exist-

ence of the adjacent interconnect, users should combine those two equations appropriately. For

the interconnect resistance estimation, “estimate_interconnect_R” which is based on (7) is pro-

vided.

However, to estimate the interconnect capacitance and resistance properly, the users are

required to provide appropriate interconnect dimensions for the estimation model. Table 4 shows

typical parameters for interconnect capacitance and resistance estimation for 0.18, 0.13, and

0.10µm technologies. space and width in Table 4 represents the minimum spacing between the

Table 3: Interconnect capacitance and resistance estimation functions in “technology.c”.

Function Name
Argument Return

Data-type Name Property Data-type

estimate_interconnect_CG

double

l length

double

s space
w width

estimate_interconnect_CC
h height
t thickness
k dielectric constant

estimate_interconnect_R double

l length

double
s space
w width
rou resistivity

Table 4: Interconnect capacitance and resistance estimation parameters.

0.18/0.13/0.10µm width (µm) space(µm) thickness(µm) height(µm) dielectric K
Local 0.28/0.20/0.15 0.28/0.20/0.15 0.45/0.45/0.30 0.65/0.45/0.30

3.5/3.2/2.8Intermediate 0.35/0.28/0.20 0.35/0.28/0.20 0.65/0.45/0.45 0.65/0.45/0.30
Global 0.80/0.60/0.50 0.80/0.60/0.50 1.25/1.20/1.20 0.65/0.45/0.30
15 of 54

interconnect. These values should be adjusted based on the specific circuit layout dimension. The

intermediate parameters are used for interconnects in bit-lines and word-lines in the memory

structure and the global parameters are used for interconnects in system clocks and power distri-

bution networks.
16 of 54

5. General Circuits
5.1 Models

For digital circuits, once node capacitances are estimated, the next step is to gather node-

switching information. We compute each switch on the fly during microarchitectural simulation,

because total dynamic power dissipation is heavily dependent on the number of switches at the

internal nodes [10][11] for some circuit blocks. To compute the number of switches in each node,

it is necessary to perform logic simulation. Traditionally, event-driven logic simulation is much

slower than compiled-code levelized logic simulation. Event-driven logic simulation is indispens-

able for accurate timing-level simulation. However, levelized logic simulation is enough to com-

pute approximated number of switches in each node.

To support logic simulation in a microarchitectural simulator and to enhance the simulation

speed, we provide a set of generic data structures and functions that enable users to combine these

basic blocks to build a more complex functional block. In this modeling technique, the users

should connect each individual transistor and give transistor sizes in the modeled block. This

tedious procedure is inevitable because the power dissipation of functional blocks can be different

by more than 100% depending on the circuit style and transistor sizes. During the initialization

process, the specialized logic simulator for a specific functional block estimates the switching

capacitance for every internal node. This logic simulator is embedded in the microarchitectural

simulator to capture necessary inputs and access activities, and generate the accumulated power

dissipation statistics, accordingly.

First, we explain the generic data structures to model a circuit node and logic gate, see Fig-

ure 6. “node_t” contains a logic value, node switching capacitance, and energy dissipation of the

node. This is one of the basic building blocks to modeling a generic gate. “lgate1_t” and
17 of 54

“lgate2_t” represent generic data structures for 1- and 2-input gates. This generic logic gate type

can be easily extended to model 3- or more input gates by adding input nodes in the data structure.

In Figure 7, we show a modeling example of the two-input CMOS NAND gate — the most

basic logic component along with the inverter — consisting of four transistors using our proposed

methodology. First, we declare input/output nodes — A, B, and Y and a generic gate — NAND2.

Second, we create a 2-input logic gate using “create_lgate2” connecting the necessary inputs,

assigning transistor widths, relating logic and assigning a energy evaluation function —

NAND2_op to lgate_op in the gate data structure. By calling “lgate_op”, the logic value and the

energy is evaluated.

Figure 6: A generic node data structure

/* netlist node type */
typedef struct {
 bit_t lvalue; /* logic value */
 double capacitance; /* node capacitance */
 double energy; /* transition energy */
} node_t;

/* 1-input generic logic gate type */
typedef struct _lgate1_t lgate1_t;
struct _lgate1_t {
 node_t *Y; /* current output */
 node_t *A; /* connected input node ptrs */
 double energy; /* energy dissipation of the gate */
 double (*lgate_op)(lgate1_t *lgate, double voltage);
 /* logic and energy evaluation fn of the gate */
};

/* 2-input generic logic gate type */
typedef struct _lgate2_t lgate2_t;
struct _lgate2_t {
 node_t *Y; /* current output */
 node_t *A, *B; /* connected input node ptrs */
 double energy; /* energy dissipation of the gate */
 double (*lgate_op)(lgate2_t *lgate, double voltage);
 /* logic and energy evaluation fn of the gate */
};

.

.

.

18 of 54

At the netlist level, multiple gates are created and connected together to simulate the entire

logic block. We levelize each gate or netlist primitive and simulate each gate one after the other,

in a sequence compatible with the partial ordering imposed by levelization. This approach corre-

sponds to the levelized cycle-based simulation technique in logic simulation [12]. As a small

example, the following illustrates how to create a netlist for a combinational circuit and simulate

the internal node activity. The example shows a combinational circuit consisting of 2-input NOR

and 2-input NAND gates. We are able to evaluate the correct output logic value by evaluating the

gates in order of increasing distance from the primary inputs. The levelized approach we use here

most often performs better than an event-driven simulation since we trade having to maintain an

event queue at the expense of simulating every gate in the netlist for each time interval [12][13].

A downside of the levelized approach is that we lose information on arrival times of signals, thus

we cannot evaluate power dissipation due to glitches and temporary transitions. However, a well-

Figure 7: Power modeling of a 2-input NAND gate

WN1

WP1 WP2

WN2

A

B

Y

/* declare a generic gate for NAND */
lgate2_t NAND2;
/* declare gate node */
node_t A, B, Y;

/* declare variables storing the transistor widths of the
gate*/
cmost_t AW, BW;

/* assign transistor sizes */
AW.WPCH = WP1; AW.WNCH = WN1; BW.WPCH = WP2; BW.WNCH = WN2;

/* create NAND2 gate create */
NAND2 = create_lgate2(&A, &B, &AW, &BW, Static, NAND2_op);

/* estimate node swiching capacitance */
NAND2->Y->capacitance

= estimate_capacitance_CSD(PCH, ...) + ...

/* evaluate logic and energy dissipation */
A.lvalue = 1; B.lvalue = 0; /* assign inputs */
energy = lgate_op->(NAND2, 1.8); /* evaluate logic and energy dissipation*/
19 of 54

designed combinational circuit should not generate many glitches, in which case our model is

fairly accurate.

This proposed modeling methodology can be extended to model a more complex datapath

or memory circuit. In both cases, since they have regular structures, they can be modeled easily in

a iterative manner after modeling one component.

5.2 Implementation
We provide a sub-set of data structures and generic functions for 1-, 2-, and 3-input gate

types in “./pmodel/logic.h” and “./pmodel/logic.c”. The detailed usage is described in the source

code. With the implemented data structures and generic functions, the users can easily extend

those according to the instructions given in “logic.h” and “logic.c”. Table 5 lists the implemented

generic gate modeling functions.

Table 5: Generic gate modeling functions in “logic.c”.

Function Name
Argument Return

Data-type Name Property Data-type

create_lgate“n” (n=1, 2, ...)

node_t * A, B, C, ... input — A, B, C, ...

lgate1_t *

cmos_t * a, b, c, ... transistor widths con-
nected to A, B, C, ...

lgstyle_t lgstyle logic style

double (*) lgate_op
function pointer evaluat-
ing logic and energy dis-
sipation of the gate

lgate_op

lagte“n”_t
(n=1, 2, ...) lgate gate to be evaluated

double
double voltage supply voltage of the

gate
20 of 54

6. Memory Power Model
In modern microprocessors, static random access memory (SRAM) is extensively used for

caches, TLBs, BTBs, branch predictors, register files, instruction queues, etc. For instance, 40%

of the total power in the Alpha 21264 and 60% of the total power of the StrongARM processor is

devoted to cache and memory structures [14][15]. As feature sizes shrink and supply voltages

decrease along with the word-line pulse technique [16], bit-line voltage swings during read opera-

tions decrease to 100mV. This has dramatically reduced the power consumption from the bit-line.

In a first order approximation, users can obtain an effective switching capacitance for run-

ning Sim-Panalyzer from the power model — energy dissipation per access — provided by the

modified CACTI in our tool set. However, the following modeling technique can be applied to

Sim-Panalyzer to estimate more accurate memory power dissipation.

6.1 Models
While the bit-line power dissipation is independent from the switching activity of the data

due to the complementary structure of bit-lines, the power dissipation of the decoder is heavily

dependent on the switching events of the decoder address inputs. Hence, we need to build a

switching event-sensitive power model for the decoder. We present an example on how to use the

technique just presented in Section 5 to model a 7×128 decoder designed with the TSMC 0.18µm

technology Artisan standard cell library and Synopsys® Design Compiler®. Figure 8 shows the

7×128 decoder logic. The decoder logic has a regular structure consisting of a set of NANDs,

NORs, and INVs. To measure bit-line energy consumption, we used the following equation:

, (8)E Cbit-line V× DD ∆Vswing×=
21 of 54

where is the bit-line capacitance per memory column and is the bit-line voltage

swing. includes the bit-line interconnect, the access transistor drain capacitance, and the

pre-charge circuit drain capacitance. The bit-line interconnect capacitance was estimated based on

the actual SRAM dimensions and using available MOSIS parametric test results from the TSMC

0.18µm technology fabrication run [8]. The access transistor drain capacitance connected to the

bit-line was estimated using (2).

6.2 Implementation
Figure 9 and Figure 10 show the corresponding descriptions of functions for creating the 3-

to-8 decoder module “create_module_dec3x8”, and evaluating logic and energy

“dec3x8_op”. The cycle-based logic simulator for the decoder was derived by instantiating and

connecting those gates in an iterative way in Figure 9. The switching capacitance of each node

was automatically estimated depending on the circuit topology. Then, the generated logic simula-

tor annotated with the extracted capacitance is embedded in the microarchitectural simulator with

Figure 8: 7×128 decoder logic.

3×8 3×8

Abus
[0:2]

Abus
[n-2:n]

word-line driver

A[0] A[1] A[2]

3×8 3×8

Abus
[0:2]

Abus
[n-2:n]

word-line driver

A[0] A[1] A[2]

Cbit-line ∆Vswing

Cbit-line
22 of 54

Figure 9: An example of modeling an 3×8 decoder.

/** dec3x8 consists of a set of inverters and nand gates. These routines describe mod-
eling examples for the decoder **/
module_dec3x8_t * /* return a 3x8 decoder module instance pointer */
create_module_dec3x8(
 node_t *A[], /* input node pointers */
 node_t *Y[], /* output node pointers */

 ...
double (*module_op)(module_dec3x8_t *module, double voltage) /* module logic and

energy evaluation fn */)
{

module_dec3x8_t *module; /* top module data structure */
...
/* create module*/
module = (module_dec3x8 *)malloc(sizeof(module_dec3x8));

 /* level-0 : create netlists for inverted address */
 for(i = 0; i < 3; i++) {
 INVA[i] = create_lgate1(A[i], &x1[0], Static, INV_op);
 A_[i] = INVA[i]->Y; }
 /* estimate drain capacitance of the connected INV gates */
 for(i = 0; i < 8; i++)
 INVA[i]->Y->capacitance += (estimate_MOSFET_CSD(PCH, ...) + ...);

 /* level-1 : create netlists for NAND gates */
 NAND3[0] = create_lgate3(A_[0], A_[1], A_[2], ..., NAND3_op);
 NAND3[1] = create_lgate3(A[0] , A_[1], A_[2], ..., NAND3_op);
 NAND3[2] = create_lgate3(A_[0], A[1] , A_[2], ..., NAND3_op);
 NAND3[3] = create_lgate3(A[0] , A[1] , A_[2], ..., NAND3_op);
 NAND3[4] = create_lgate3(A_[0], A_[1], A[2] , ..., NAND3_op);
 NAND3[5] = create_lgate3(A[0] , A_[1], A[2] , ..., NAND3_op);
 NAND3[6] = create_lgate3(A_[0], A[1] , A[2] , ..., NAND3_op);
 NAND3[7] = create_lgate3(A[0] , A[1] , A[2] , ..., NAND3_op);

/* estimate drain capacitance of the connected NAND gates */
 for(i = 0; i < 8; i++)
 NAND3[i]->Y->capacitance += (3. * (estimate_MOSFET_CSD(PCH, ...) + ...);

/* level-2 : connect outputs of the netlist */
 for(i = 0; i < 8; i++)
 Y[i] = NAND3[i]->Y;

...
return module;

}

23 of 54

Figure 10: An example of evaluating an 3×8 decoder.

/* dec3x8 logic and energy dissipation evaluation function */
double /* return energy */
dec3x8_op(
 module_dec3x8_t *module /* module to be evaluaed */,
 double voltage /* supply voltage */)
{
 /* temporary pointers */
 lgate3_t **NAND3;
 lgate1_t **INVA;
 node_t **Y;

 double energy;
 int i;

 /* retrieve node and gate instance pointers */
 Y = module->Y;
 NAND3 = module->NAND3;
 INVA = module->INVA;

 /* logic and energy dissipation evaluation */
 energy = 0.;
 /* level-0: inverter gate logic and energy dissipation evaluation */
 for(i = 0; i < 3; i++)
 energy += INVA[i]->lgate_op(INVA[i], voltage);

 /* level-1: NAND gate logic and energy dissipation evaluation */
 for(i = 0; i < 8; i++)
 energy += NAND3[i]->lgate_op(NAND3[i], voltage);

 /* return energy */
 return energy;
}

24 of 54

an interface routine passing the current address bus value to the logic simulator and returning the

estimated energy consumption to the microarchitectural simulator.

In Figure 9, “create_module_dec3x8” creates a module instance for 3-to-8 decoder.

This module consists of instantiating and connecting the basic gates to implement the 3-to-8

decoder function. First, a memory space for the module data structure is allocated with “module

= (module_dec3x8 *)malloc(sizeof(module_dec3x8))”. Second, the decoder

components are created and instantiated in the levelized order — level 0 to 2. In level 0, inverter

gates are created and instantiated to generate inverted address bus signals. In level 1, NAND gates

are created and instantiated to form the 3-to-8 decoder function. In level 2, the outputs of the

NAND gates are connected to the output node “Y”.

After the creation of gate instances, we estimate the source/drain capacitance of each gate;

the estimation of the input gate capacitance is automatically done by the logic gate creation func-

tions. The reason the source/drain capacitance should be estimated separately is that the output

drain capacitance estimations are different for each gate type depending on the circuit topology

while the gate input capacitance is independent from the gate type.

In Figure 10, to evaluate the 3-to-8 decoder, the module function “dec3x8_op” is derived

by evaluating each gate instance in the levelized order. First, the inverter gates are evaluated with

the applied address bus. Second, the NAND gates are evaluated with the updated node logic val-

ues from level 1. The implemented source codes ‘./pmodel/dec3x8.h’ and ‘./pmodel/

dec3x8.c’ explain in detail on how it works. See Table 6 for information on the implemented

function prototypes.

Figure 11 and Figure 12 show the corresponding descriptions of functions for creating the 7-

to-128 decoder module “create_module_dec7x128”, and evaluating logic and energy
25 of 54

“dec7x128_op”. “create_module_dec7x128” instantiates 3 “dec3x8” modules, NOR

gates, and inverters to implement the “dec7x128” module. In addition, “dec7x128_op”

reuses “dec3x8_op” to evaluate the logic and energy dissipation. The implemented source

codes ‘./pmodel/dec7x128.h’ and ‘./pmodel/dec7x128.c’ explain in detail on how

it works. See Table 6 for information on the implemented function prototypes.

The hierarchical structure along with the re-use property allows users enormous flexibility

and reduces the tremendous modeling efforts. We can create a more complex function module by

instantiating simple modules and connecting the nodes. The above examples are for a specific cir-

cuit type of memory decoder, but if the users want to evaluate different circuit styles with the

same decoder function, they only have to recombine the gates and reconnect the internal nodes.

6.3 Calibration
Figure 13-(a) shows the calibrated energy consumption of a 4KB SRAM power model

against HSPICE measurement. In the figure, each point represents the energy consumption for

each applied vector. For the HSPICE experiment, we modeled and simulated the whole 7×128

Table 6: 3-to-8 decoder modeling functions in “dec3x8.c”.

Function Name
Argument Return

Data-type Name Property Data-type

create_module_dec3x8

node_t ** A, Y input — A, and output
— Y

module_dec3x_
t *

cmos_t ** x3WCH transistor widths for 3-
input NAND gates

cmos_t ** x1WCH transistor widths for 3-
input inverter gates

double (*) module_op
function pointer evaluat-
ing logic and energy dis-
sipation of the module

dec3x8_op

module_dec3x8
_t module_op module to be evaluated

double
double voltage supply voltage of the

module
26 of 54

Figure 11: An example of modeling an 7×128 decoder.

/** dec7x128 consists of a set of inverters and nand gates. These routines describe
modeling examples for the decoder **/
module_dec7x128_t * /* return a 3x8 decoder module instance pointer */
create_module_dec7x128(
 node_t *A[], /* input node pointers */
 node_t *Y[], /* output node pointers */ ...,s

double (*module_op)(module_dec7x128_t *module, double voltage) /* module logic and
energy evaluation fn */)
{

module_dec7x128_t *module; /* top module data structure (1) */
...
/* allocate space for the module instance (2) */

 module = (module_dec7x128_t *)malloc(sizeof(module_dec7x128_t));

/* level-0 : create netlists for 3x8 decoders */
/* create module instances and connect the nodes */
dec3x8[0] = create_module_dec3x8(A, dec3x8Y0, &x3WCH[0], &x1WCH[0], dec3x8_op);
dec3x8[1] = create_module_dec3x8(A+3, dec3x8Y1, &x3WCH[0], &x1WCH[0], dec3x8_op);
dec3x8[2] = create_module_dec3x8(A+6, dec3x8Y2, &x3WCH[0], &x1WCH[0], dec3x8_op);

 /* level-1 : create netlists for nor gates */
 /* allocate space for the NOR instances */

for(i = 0; i < 8; i++) {
 for(j = 0; j < 8; j++) {

/* create gate instance and estimate the output node drain capacitance */
NOR3[8*i+j] = create_lgate3(dec3x8Y0[j], dec3x8Y1[i], dec3x8Y2[0], ...);
NOR3[8*i+j]->Y->capacitance += (1.*(estimate_MOSFET_CSD(PCH,...) + ...);

 } }
 for(i = 0; i < 8; i++) {

 for(j = 0; j < 8; j++) {
/* create gate instance and estimate the output node drain capacitance */
NOR3[64+8*i+j] = create_lgate3(dec3x8Y0[j], dec3x8Y1[i], dec3x8Y2[1], ...);
NOR3[64+8*i+j]->Y->capacitance += (1.*(estimate_MOSFET_CSD(PCH,...) + ...);

 } }
 /* level-2 : create netlists for inverters after nor gates */

 INVNOR = (lgate1_t **)calloc(128, sizeof(lgate1_t *));
 for(i = 0; i < 128; i++) {
 INVNOR[i] = create_lgate1(NOR3[i]->Y, &x1WCH[2], Static, INV_op);
 INVNOR[i]->Y->capacitance += (1.*(estimate_MOSFET_CSD(PCH, ...) + ...); }

 /* level-3 : create netlists for inverters after INVNOR gates */
 for(i = 0; i < 128; i++) {

 /* create gate instance and estimate the output node drain capacitance */
 INVWL[i] = create_lgate1(INVNOR[i]->Y, &x1WCH[3], Static, INV_op);
 INVWL[i]->Y->capacitance += (1.*(estimate_MOSFET_CSD(PCH, ...) + ...); }

 /* level-4 : connect outputs of the netlist */
 for(i = 0; i < 128; i++)
 Y[i] = INVWL[i]->Y;

...
return module;

}

27 of 54

Figure 12: An example of evaluating an 7×128 decoder.

/* dec7x127 logic and energy dissipation evaluation function */
double
dec7x128_op(
 module_dec7x128_t *module,
 double voltage)
{
 module_dec3x8_t **dec3x8;
 lgate3_t **NOR3;
 lgate1_t **INVNOR;
 lgate1_t **INVWL;
 node_t **Y;

 double energy;
 int i, j;

 /* retrieve node and gate instance pointers */
 Y = module->Y;
 dec3x8 = module->dec3x8;
 NOR3 = module->NOR3;
 INVNOR = module->INVNOR;
 INVWL = module->INVWL;

 /* logic and energy dissipation evaluation */
 energy = 0.;
 /* level-0: 3x8 decoder logic and energy dissipation evaluation */
 for(i = 0; i < 3; i++)
 energy += dec3x8[i]->module_op(dec3x8[i], voltage);

 /* level-1: NOR logic and energy dissipation evaluation */
 for(i = 0; i < 128; i++)
 energy += NOR3[i]->lgate_op(NOR3[i], voltage);

 /* level-2: INVNOR logic and energy dissipation evaluation */
 for(i = 0; i < 128; i++)
 energy += INVNOR[i]->lgate_op(INVNOR[i], voltage);

 /* level-3: INVWL logic and energy dissipation evaluation */
 for(i = 0; i < 128; i++)
 energy += INVWL[i]->lgate_op(INVWL[i], voltage);

 /* return energy */
 return energy;
}

28 of 54

decoder and a dummy 128×256 bit memory array; we modeled just one column of 128 cells mul-

tiplied by 256 to speed up the simulation. As seen in Figure 13-(a), the estimated energy con-

sumption follows the actual measurement result closely for each applied vector. The proposed

technique has an average 7% estimation error for 1K vectors compared to the HSPICE measure-

ment. However, when comparing the execution time, the proposed technique completed within a

Table 7: 3-to-8 decoder modeling functions in “dec3x8.c”.

Function Name
Argument Return

Data-type Name Property Data-type

create_module_dec3x8

node_t ** A, Y input — A, and output
— Y

module_dec3x_
t *

cmos_t ** x3WCH transistor widths for 3-
input NAND gates

cmos_t ** x1WCH transistor widths for 3-
input inverter gates

double (*) module_op
function pointer evaluat-
ing logic and energy dis-
sipation of the module

dec3x8_op

module_dec3x8
_t module_op module to be evaluated

double
double voltage supply voltage of the

module

5

6

7

8

9

0 8 16 24

Vector sequence

E
ne

rg
y

C
on

su
m

pt
io

n
(p

J)

Estimation HSPICE

0

5000

10000

15000

20000

25000

30000

fft patracia bfish rc6 anagram AES tiffdither cjpeg

Benchmark

E
ne

rg
y

C
on

su
m

pt
io

n
(p

J)

L1 inst cache L1 data cache

Figure 13: Calibration of SRAM energy consumption model in (a) and L1 instruction and data
cache energy consumption in (b).

(a) (b)
29 of 54

few seconds while the HSPICE took 3.4 hours on UltraSparc80® 450MHz dual processors with a

4MB L2 cache.

Figure 13-(b) shows the total accumulated energy consumption of the 4KB L1 instruction

and data caches obtained by running 10 million instructions for a subset of embedded benchmark

programs from the MiBench Benchmark Suite [17]. The proposed power models were embedded

in Sim-Panalyzer with the StrongARM configuration for this experiment. In the process of esti-

mating energy the actual address stream was applied to the SRAM power model on the fly.

The estimated energy consumption results show that total energy consumption can be sig-

nificantly different depending on the benchmark programs even if the same number of instruc-

tions are executed. Usually, the instruction cache consumes more energy than the data cache.

However, the average energy dissipation per access of a data cache is usually higher than that of

an instruction cache. The primary reason for this energy consumption behavior is that the activity

ratio of an instruction cache is higher than the data cache, while the address stream supplied to the

data cache is more non-sequential than the instruction cache, which means more switching events

in the address bus. These characteristics imply that both input switches and the access activities

for the application-specific functional block must be considered for accurate power estimation of

embedded microprocessors. In terms of overhead for the microarchitectural simulator, the pro-

posed technique increases the execution time by 3% for both the instruction and data cache.
30 of 54

7. Datapath and Execution Unit
7.1 Implementation

We now present an example on how to use the proposed technique to implement a datapath

component and generate power estimations that interfaces at run-time with the micro-architec-

tural simulator. For this example, we consider a 32-bit carry-select adder consisting of eight 8-bit

ripple-carry adders as reported in Figure 14. For each 8-bit add, two 8-bit ripple-carry adders are

used to compute the results in parallel for zero and one carry-ins, respectively. The first step is to

construct the basic block for a full adder by instantiating the necessary logic gates: the construc-

tion of the class FullAdder creates all the internal gates and it properly connects them, so that two

output nodes, S and CO, produce the correct functionality. By this point, the main program can

create and connect the full adder blocks employing a loop shown in Figure 14. Note how the pro-

gram structure lends itself naturally to the parameterization of the bus width. By instantiating

eight 8-bit ripple-carry adders, we are able to build a 32-bit carry adder. By this point, the model

includes a complete description of the logic block under observation. The last two steps provide

an interface to the microarchitectural simulator by retrieving on-the-fly at each cycle the input

vectors corresponding to the two operands of the add operation, and proceeding with the power/

Figure 14: An example of modeling an 8-bit RCA.

/* step 1: create netlist */
for(i = 1; i < WIDTH; i++) {

/* create and connect FullAdder instances */
FA[i] = FullAdder(A[i], B[i], FA[i-1].CI, CO[i], SO[i]...);}

/* step 2: load input vectors */
A.apply(LOp); B.Apply(ROp);

/* step 3: logic and energy evaluation*/
for(i = 0; i < WIDTH; i++) {

energy += FA[i].GateOp(voltage);}
31 of 54

logic simulation. The implemented source codes ‘./pmodel/rca.h’ and ‘./pmodel/

rca.c’ explain in detail on how it works. Those power models are parameterizeable; by chang-

ing “WIDTH” in the function, the bit-width of the implemented adder can be easily changed.

7.2 Calibration
We calibrated our model by comparing the results with the corresponding HSPICE circuit

simulation. Figure 15-(a) shows a calibration using the carry-select adder in the previous case

study. Each point in the graph represents dissipated energy estimated or measured by applying

each vector to the circuit. The diagram indicated that the technique proposed tracks the actual

power dissipation of adders very well; we found that the average estimation error by applying 1K

vectors is around 9%. The steady under-approximation error of the power estimator can be

explained by two sources of power dissipation that our model does not take into account: glitches

occurring because of the relative delays among signal propagation times and temporary short cir-

cuits due to both PMOS and NMOS transistors being turned on during the transition.

Table 8: 3-to-8 decoder modeling functions in “dec3x8.c”.

Function Name
Argument Return

Data-type Name Property Data-type

create_module_dec3x8

node_t ** A, Y input — A, and output
— Y

module_dec3x_
t *

cmos_t ** x3WCH transistor widths for 3-
input NAND gates

cmos_t ** x1WCH transistor widths for 3-
input inveter gates

double (*) module_op
function pointer evaluat-
ing logic and energy dis-
sipation of the module

dec3x8_op

module_dec3x8
_t module_op module to be evaluated

double
double voltage supply voltage of the

module
32 of 54

To produce the graph in Figure 15-(b), we simulated the SPEC2000 INT benchmark pro-

grams [18] while running the power simulator on our 32-bit adder component. For each bench-

mark program, we applied 32K vectors to the power model. The results show the total energy that

was dissipated in the adder. Note how the total energy dissipation profiles present high variations

over different benchmark programs. For instance, mcf consumes 480% more energy than eon

which seems to indicate that the amount of data activity plays an important role in the accurate

estimation of the power dissipation of a datapath component. Because of its accuracy and flexibil-

ity, this technique could easily be applied in trade-off studies of various solutions for datapath cir-

cuits, or for optimization of power dissipation in embedded processors where the datapath

constitutes a significant portion of the total power dissipation.

0

1

2

3

0 8 16 24

Vector sequence

E
ne

rg
y

C
on

su
m

pt
io

n
(p

J)

Estimation HSPICE

0

5000

10000

15000

20000

25000

bz
ip

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

A
V

G

Benchmarks

E
ne

rg
y

(p
J)

32-bit CSA

Figure 15: Calibration of 32-bit CSA energy consumption model in (a) and total energy consumpti

(a) (b)
33 of 54

8. Clock Distribution Tree
Ever increasing clock frequencies and die area of microprocessor designs require more

aggressive clock distribution networks (or trees). As a result, the fraction of total clock power dis-

sipation has become more significant, depending on the target clock frequency and the maximum

allowable clock skew. In the case of a small embedded processor design, such as the StrongARM,

the clock distribution network consumes only 10% of the total power [15]. However, for the

Alpha 21264 microprocessor, the clock consumes up to 32% (23W) of the total average chip

power (72W) [14], and the percentage of total clock power is expected to keep increasing for

high-end microprocessors that employ aggressive clock frequencies and pipeline-depths [25].

Hence, accurate estimation of clock power is an important key for accurate total microprocessor

power estimation, and the fraction of clock power is substantial whether we consider embedded or

high-end microprocessors.

8.1 Models
In a tree-style clock distribution system, the power consumption of a clock distribution tree

consists of three components:

• Clock distribution tree interconnects.

• Clock buffer gates and parasitics.

• Clocked nodes.

In the Alpha 21264, the power dissipation of the clock distribution tree interconnect and buffers is

65% of the total clock distribution system power. Assuming that an H-tree style clock distribution

system is employed, the total interconnect capacitance of a clock distribution tree becomes:

(9)CH-tree cint Adie× 2
Ntree 1∠

× 1
2 i 2⁄ 1+

i 1=

Ntree

∑×=
34 of 54

where cint, Adie, and Ntree represent the interconnect capacitance per unit length, chip die area, and

the number of levels of depth of the tree, respectively [7]. Also, Ntree, the depth of the tree, is

given by:

, (10)

where rint and cskew represent the interconnect resistance per unit length and maximum allowable

clock skew.

As seen from (9) and (10), there are several variables that impact the capacitance of a clock

distribution interconnect; the estimation of clock distribution interconnect capacitance is more

complicated in the case of other clock distribution styles such as balanced H-tree or tree driven

grids. Hence, it is extremely difficult to estimate all needed parameters accurately at the microar-

chitectural level. We estimate cint and rint using the interconnect capacitance and resistance esti-

mation model we provide in (3), (4), and (7) (see Table 3 for the functions provided for the

interconnect parameter estimations in Sim-Panalyzer).

In Wattch, for example, the chip die area and the depth of the clock distribution tree are

fixed. However, both parameters can change significantly as the microarchitectural and circuit

parameters are changed. For instance, the addition of on-chip L2 caches cause major increase in

die area. In addition, the physical implementation phase, such as placement and route, can affect

the global chip area. Even worse, estimating parameters such as maximum allowable clock skew

requires an in-depth understanding for both circuit design and semiconductor process knowledge

incorporated with the target chip specification.

Ntree Adie
rint cint×

cskew
----------------------× 1+=
35 of 54

Figure 16 shows the sensitivity of a clock distribution tree power to the maximum allowable

clock skew and chip die area of a microprocessor. In this experiment, an “H-tree” is assumed for

the clock distribution tree topology. The 100% die area in Figure 16 corresponds to that of the

Alpha 21264 implemented with 0.35µm technology. The clock skew in Figure 16 is the relative

fraction of the 600MHz clock frequency of the Alpha 21264 microprocessor. According to the

estimation used in (9) and (10), the estimated global clock distribution tree power with 2.9% max-

imum allowable clock skew is 4W, which agrees with the published value in [26]. However, as

seen in Figure 16, the clock distribution tree power has exponential dependency on the micropro-

cessor die area and maximum allowable clock skew. For instance, the estimated clock distribution

tree power dissipation increases by 200% when the target clock skew is changed from 2.5% to 2%

at the 100% die area point. If the microprocessor die area increases from 100% to 125%, a 2.5%

Figure 16: Power consumption of clock distribution tree for maximum allowable clock skew and
microprocessor die area.

H-tree is assumed for the clock distribution tree topology. The 100% normalized die area corresponds to that of Alpha 21264
implemented with 0.35µm technology. The clock skew is relative fraction of 600MHz clock frequency.

50%

100%

150%
2.0%

2.5%
3.0%

3.5%
4.0%

0

5

10

15

20

25

30

35

40

45

Power (W)

Norm Area Clock skew
50%

100%

150%
2.0%

2.5%
3.0%

3.5%
4.0%

0

5

10

15

20

25

30

35

40

45

Power (W)

Norm Area Clock skew
36 of 54

clock skew point also results in 200% increase of the clock distribution tree power. Hence, a slight

misprediction of either clock skew or chip area incurs a significant error in power estimation.

The power consumption in Figure 16 is estimated only with the clock distribution tree wire

capacitance. The clock distribution buffers also dissipate a substantial amount of power, which

can be estimated by:

(11)

where aclk buffer represents the tapering factor or the optimal stage ratio for the clock buffer [7]

and aclk load for Alpha 21264 is around 2.7nF. (9), (10), and (11) give a total power of 26W for the

clock distribution including switching of clocked nodes, which is similar to 23W reported in [26].

Out of the 26W in total clock distribution power, 14.7W is consumed by the clock buffers, which

is quite significant. However, to estimate the clock buffer power accurately, the exact amount of

clock node capacitance must be known, which requires detailed information on the number and

sizes of flip-flops in the microprocessor. Depending on the individual device sizes and numbers,

the power consumption of a clock distribution system can be quite different.

In summary, it is extremely difficult to estimate the clock power accurately due to too many

uncertainties at the microarchitectural level, In particular, one must have accurate die area and

clock node capacitance estimates of the target microprocessor which are strongly dependent on

changes in the microarchitectural and circuit implementation. However, accurate power estima-

tion of the clock distribution system is very important since it comprises a large fraction of power

dissipation and it can vary in a wide range with small changes to parameters. Therefore, a proper

Csw, clk CH-tree Cclk load+() 1

1 1
aclk buffer
--------------------∠

------------------------------- 1+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

×=
37 of 54

clock skew, die area, and clocked node capacitance must be specified for accurate estimation of

total clock power dissipation.

8.2 Implementation
In Sim-Panalyzer, we provide a data structure to specify the clock distribution tree styles;

we support two clock tree styles — H tree and balanced H tree, see Figure 17 for the clock tree

specifying data structure. This data structure is used to specify the clock distribution tree style for

the clock distribution tree switching capacitance estimation function — “estimate_switching_CT”

— based on (9), (10), and (11). The “estimate_switching_CT” returning total switching capaci-

tance of the clock tree is provided with other related sub-routines in “clock.c”. The users should

specify the clock tree style, target clock skew, clocked die area, clocked node capacitance, and the

number of optimal buffer stages for the clock distribution buffer.

Finally, we provide a command-line executable “clock-panalyzer” with the following

options:

Figure 17: Basic data structure for clock distribution tree style in “technology.h”.

/* clock tree style type*/
typedef enum {Htree /* H-tree */, balHtree /* balanced H-tree */} clocktree_style_t;

Table 9: Clock tree switching capacitance estimation functoins in “clock.c”.

Function Name
Argument Return

Data-type Name Property Data-type

estimate_switching_CT

clocktree_style
_t style clock tree style — H-

tree or balH-tree

double

double cskew clock skew
double area clocked die area

double switching_CN clocked node capaci-
tance

int nbstage_opt number of optimal
buffer stage
38 of 54

• -t clock tree style (e.g., -t Htree or -t balHtree)

• -s clock skew in pico-second (ps) (e.g., -s 20)

• -a die area in mm2 (e.g., -a 100)

• -n number of clock buffer stages (e.g., -n 4)

• -l clocked node capacitance in pico-Farad (pF) (e.g. -l 20)

This is useful to perform a clock power trade-off study among those option parameters such as

clock tree style, clock skew, die area, clocked node capacitance, etc.
39 of 54

9. I/O
Generally, the I/O circuits (dis)charge a large amount of loading capacitance as well as

require higher supply voltage than the microprocessor core (e.g., 3.3V). This makes the I/O cir-

cuits a major contributor to the peak power dissipation of a microprocessor. Although the micro-

processor may not frequently access the external memory through the I/O in the presence of L1

and L2 on-chip caches, a significant amount of power will still be consumed by the I/O circuits;

the Alpha 21264 I/O circuit consumes 5% (~3.5W) of total power on average [14]. Furthermore,

the fraction of power dissipated by the I/O circuits will be significantly increased because there is

no on-chip L2 or L1 cache in the embedded microprocessors. However, the power consumed by I/

O circuits has been ignored or not modeled properly in most frameworks for microarchitectural

power estimation. There are two sources of error: 1) the lack of detailed information about the

external loading capacitance connected to the I/O circuit, and 2) the I/O bus transaction model

used in microarchitectural simulator.

9.1 Model
Figure 18 shows both the memory I/O access modeling in the microarchitectural simulator

and the cycle-accurate I/O bus transaction modeling. For example, SimpleScalar — baseline sim-

ulator for most microarchitectural power estimation simulators — transfers all the request data

blocks at the call time of the external memory access function (e.g., mem_access in Figure 18)

and returns the access latency. The typical microprocessor transfers the blocks one by one over

several I/O bus cycles with a more complex data transfer protocol. As we have noted, the cycle-

based microarchitectural simulators derive their speed from abstracting out many of the physical

details. Hence, we have no idea about the details of the memory transfer protocol including exact

timing and bus switching activity of address and data I/O buses. To correct this, we need a mech-
40 of 54

anism or modification for tracing actual I/O address and data during the I/O transactions in a cycle

accurate way. To provide this mechanism, it is necessary to augment the simulator to trace I/O bus

streams and feed them to the power model at the pertinent I/O transaction cycle as illustrated in

Figure 18.

Figure 19-(a) shows an I/O bus power model accounting for the actual I/O bus switching

activity during memory I/O bus cycles. In this model the number of “0” to “1” transitions of the I/

O pin is counted by comparing the blocks transferred in the previous and current I/O bus cycles.

At the initiation of the I/O bus transaction cycle, the high-impedance bus state is assumed. To esti-

mate the power dissipation from the I/O bus at a pertinent I/O cycle, the total number of I/O pin

transitions of each block is transferred to the I/O circuit power model. In general, the switching

capacitance of the I/O circuit consists of the intrinsic (or internal) capacitance by the I/O circuit

itself and the extrinsic (or external) capacitance by the connected chipset and by the PCB inter-

connect between the microprocessor and the chipset I/O pins. The amount of the extrinsic capaci-

mem_access call

Nth access addr transaction cycles(N-1)th access transaction cycles

data0 data1 data2 data3data bus data6 data7

latency = mem_access(addr = addr0, blk_size = 4, &data);

data0 data1 data2 data3current data bus
stream buffer

data7

previous data bus
stream buffer

access latency

mem_access_dbus_if(blk_size = 4, &data, sim_cycle = M, latency);

data6

data0 data1 data2 data3current data bus
stream buffer

previous data bus
stream buffer

data7

activate bus cycle

data1 data2 data3current data bus
stream buffer

previous data bus
stream buffer

data0

activate bus cycle

activate bus cycle

Mth sim cycle

sim cycle

M-1

M

M+2

Figure 18: The memory access I/O modeling in the microarchitectural simulator and cycle-
accurate I/O transaction modeling.

memory access model in the
microarchitectural simulator

interface capturing actual I/O data
for the cycle-by-cycle bus modeling
41 of 54

tance driven by the I/O circuit is more significant than that of the intrinsic capacitance by the I/O

circuit itself. Therefore, it is important to estimate the extrinsic capacitance accurately.

In most high-end computer systems, the microprocessor is not directly connected to the

memory module in the PC motherboard. It is connected to the memory controller through the

front system bus (or simple I/O bus). Hence, the I/O pin capacitance of the microprocessor and

chipset should be known as well as the PCB interconnect capacitance of the front system bus.

According to [21], the typical package pin capacitance of both the microprocessor and chipset is

5pF per I/O pin. To estimate the PCB interconnect capacitance, some details about interconnect

dimensions should be known. The interconnect dimensions and layer information is usually found

in the chipset or microprocessor specification; in case the microprocessor or the chipset has not

been developed, the most recent available information can be used. The estimated PCB intercon-

nect capacitance per inch is around 2.15pF for the given specification in which the minimum and

blk0 blk1 blk2blk4 blk4

from Nth transactionfrom N-1th transaction

blk3

keep/high impedance
bus mode

blk0 blk1 blk2 blk4

from Nth transaction

pull-up/pull-down
bus mode

bus switching activity

bus stream buffer

0xffff/0x0000

bus switching activity

bus stream buffer

0.00

2.50

5.00

7.50

0 8 16 24 32 40

I/O sequence

P
ow

er
 (

W
)

3" 6" PCB Routing Length

1 I/O bus
transaction

Figure 19: The I/O bus switching activity model in (a) and a snapshot of power dissipation by 64-
bit processor I/O bus in (b).

In (b), it is assumed that the front system bus (or I/O bus) operating frequency is 800MHz and voltage is 2.6V [21]. The 4-wide
issue machine is used for the experiment.

(a) (b)
42 of 54

maximum allowed front system bus interconnect lengths are 3” and 6”, respectively. Therefore,

the PCB interconnect capacitance of the front system bus is between 6.5pF and 13pF depending

on the interconnect length; in case of the 6” front system bus, the PCB interconnect capacitance is

around 13pF, which results in a total of 23pF per pin including the package pin capacitance of

both the microprocessor and chipset.

With the I/O bus capacitance and the detailed bus protocol modeling, we were able to esti-

mate the power dissipation of the 64-bit microprocessor I/O bus with realistic parameters (see

Figure 19-(b) for a snapshot of I/O bus power dissipation when running eon). The experiment

shows that the power dissipation by the I/O bus is substantial whether the front system bus inter-

connect length is 3” or 6”, and it has great potential to contribute to the peak as well as the average

power dissipation of the microprocessor during the I/O bus cycles. Furthermore, this experiment

shows that counting switching activity in a cycle accurate way is important, because the power

dissipation by I/O at a specific I/O cycle is significantly different depending on the number of I/O

pin switches.

9.2 Implementation

I/O is divided into 4 subcomponents. The buffer chain, I/O pad, microstrip, and external load. We

made each sub-component configurable from the cmd file. The I/O pad information was extracted

from technology libraries. For our example, the TSMC 0.18um Artisan Cell Libraries were used.

Microstrip capacitance was extracted from an impedance calculator. We used (12) to acquire PCB

capacitance and made the wire length configurable. The external load is also configurable. We

described I/O pads into 2 types; Bidirectional, Unidirectional. Bidirectional implies that in idle

state the I/O goes to high impedance, ‘Z’, state. Unidirectional implies that it maintains the last
43 of 54

active value in idle state. When an external memory access occurs, we create a queue that gener-

ates I/O power estimates that occur during memory transactions. Sim-Panalyzer evaluates these

estimates at the appropriate cycle. This enables us to estimate peak power for I/O in a cycle accu-

rate manner. I/O related code is located in ‘./pmodel/io_panalyzer.c’ and ‘./pmodel/

io_panalyzer.h’.

, (12)C0 l
0.67 εr 1.41+()

5.98h
0.8w t+
-------------------log

-------------------------------------=

Figure 20: Cross section of Microstrip

w:width t:thickness h:height l:length
44 of 54

10. Conclusion
In this study, we provided power modeling methodologies for deep sub-micron micropro-

cessors. We introduced a simple switching capacitance extraction methodology and a cycle-based

logic simulation technique which can be easily embedded into a high-level microarchitectural

simulator, for instance SimpleScalar. The high-level microarchitectural simulator enables the user

to explore a much larger design space quickly. Combining this high-level simulator with the

embedded low-level logic simulator gives us more accurate power estimation results quickly for

application specific functional blocks. In addition, we illustrated and calibrated our power model-

ing for caches, execution units, and I/O. Our experiments show the power models track HSPICE

closely for each applied vector as well as producing accurate average energy dissipation. This is

achieved with a very small execution time overhead and is therefore a highly desirable method for

estimating the power usage of many different microprocessor designs.
45 of 54

Appendix A - Sim-iPAQ
The following is the first release of the SimpleScalar iPAQ platform simulator. It is capable

of booting the Linux operating system and provides a root filesystem with a variety of useful

ARM Linux utilities. Comments, questions, or bug fixes may be directed to the authors via email

at ss-sa@cs.colorado.edu.

In this release, the critical platform components have been implemented including ARM

instruction emulation, ARM MMU support, and I/O models for the ARM iPAQ real-time clock,

interrupt controller, serial devices, FLASH and DRAM memory, and the OS timer. The simulator

model is able to boot the Linux kernel; however, some bootloader and Linux commands are still

not functioning due to a few remaining implementation issues. Nevertheless, a significant amount

of functionality exists in this release, therefore we have made it available and will update the code

as bugs are identified and fixed.

A.1 Sim-iPAQ Distribution Components
Platform Simulator - The platform simulator is derived from SimpleScalar version 3.0

located at www.simplescalar.com. It includes ARM instruction emulation, ARM MMU support,

and I/O models for the ARM iPAQ real-time clock, interrupt controller, serial devices, FLASH

and DRAM memory, and the OS timer.

Platform Console - The platform console provides serial terminal emulation. It connects to

the platform simulator and allows the user to issue bootloader and Linux command-line com-

mands to the simulator.

ARM Bootloader - The ARM bootloader is installed into memory at simulator initialization

time. It decompresses the kernel and initializes the filesystem.
46 of 54

ARM Linux Kernel - The ARM Linux Kernel provides operating system functionality and

is decompressed by the bootloader at initialization.

ARM Linux Root Filesystem - The ARM Linux Root Filesystem provides a number of stan-

dard utilities in the root filesystem that are available after the ARM Linux Kernel boots on the

platform simulator. A few examples of these standard utilities are ls, diff, and mount.

A.2 Building the Simulation Environment
The following sections will describe how to build the various components of the Sim-iPAQ

simulation environment. One thing to note before beginning is that this release of Sim-iPAQ has

only been tested on RedHat Linux version 8.0 for x86. However, it will probably work on any lit-

tle-endian platform provided that the build uses GNU GCC for the compilation.

A.3 iPAQ Platform Model
The Sim-iPAQ platform model, located in the "sim-ipaq/" directory of the download

archive, must be configured before it can be built. In addition to the normal SimpleScalar config-

uration parameters found in the README file, the variable LINUX_PATH in the Makefile must

be set to the root location of the Linux build. Once the normal configurations are made and the

Makefile is configured as above, the platform simulator, called sim-ipaq, is built with the follow-

ing command:

make

The build processor will also compile the Platform Console, conveniently called console.
47 of 54

A.4 iPAQ Bootloader, ARM Linux Kernel, and Root Filesystem
Before beginning with this step, it should be noted that pre-built versions of the iPAQ Boot-

loader, ARM Linux Kernel, and Root Filesystem are provided in the Sim-iPAQ distribution, thus

you may skip this step unless a custom kernel or filesystem is required.

If a custom environment is desired, the first thing that will be needed is an ARM cross com-

piler to build the bootloader and ARM Linux Kernel. One such cross compiler is available for

SimpleScalar at the following location: http://www.simplescalar.com/v4test.html.

The iPAQ Bootloader, located in the "linux-build/bootldr" directory, is a free ARM-based

bootloader distributed by Compaq. It provides a variety of debug functions, plus Linux kernel

decompression, and root filesystem initialization. To build the bootloader execute the following

command in the bootloader directory:

make

This will produce the file "bootldr.bin", which is an ELF binary format bootloader, in the

format expected by the Sim-iPAQ platform simulator. See the README files for details on the

commands supported by the bootloader. Additional documentation is available by executing the

"help" command at the bootloader prompt.

The ARM Linux Kernel, located in the directory "linux-build/linux", has a complete kernel

build. A large number of build options are available for the kernel which can be seen in the

README file located in the above linux-build/linux directory. The kernel has been pre-config-

ured with the options expected by the Sim-iPAQ platform simulator. To build the ARM Linux

Kernel, execute the following command in the kernel directory:

make zImage
48 of 54

This will create "zImage.bin", which is a compressed ARM Linux Kernel with devices com-

piled in to match the devices supported by the Sim-iPAQ platform simulator.

The ARM Linux Root Filesystem provides a minimal filesystem available to users once the

ARM Linux Kernel boots on the Sim-iPAQ platform simulator. The root filesystem is loaded into

simulated FLASH memory as a compressed-RAM filesystem (CRAMFS). The first step to build-

ing a compressed-RAM filesystem is to build the filesystem build utility "mkcramfs", which is

located in the directory "linux/kernel/scripts/cramfs/". Build this utility with the following com-

mand in the CRAMFS directory:

make

Next, assemble a filesystem, on the local host filesystem, with exactly the same ARM bina-

ries and permissions desired on the CRAMFS. To create the CRAMFS filesystem, execute the fol-

lowing command:

linux/kernel/scripts/cramfs/mkcramfs init-2-56 init-2-56.cramfs

Where "init-2-56" is the top-level directory of the local representation of the filesystem to

create, and "init-2-56.cramfs" is the name of the file that will contain the compressed filesystem.

A.5 Running the IPAQ Platform Model
To run the IPAQ platform model, first run the platform simulator, located in the "sim-ipaq/"

directory, with the following command:

sim-ipaq linux-boot

The argument "linux-boot" indicates that the platform simulator should initiate a standard

Linux boot sequence. The standard boot sequence accesses files in the directory specified by the

build parameter LINUX_PATH. The sequence first reads the bootloader executable "bootldr.bin",
49 of 54

then the compressed Linux ARM Kernel "zImage.bin", and finally the root filesystem "init-2-

56.cramfs".

After reading the FLASH ROM components into simulated FLASH RAM, the

platform simulator will connect to the terminal emulator. The terminal emulator is the user's

access point to the Linux simulation, providing a means for entering command lines to the boot-

loader and Linux shells. The platform console is a front-end to the serial device emulator. To start

the platform console, enter the following command in a separate window:

console -s script-boot.txt

This will initiate a platform console connection to the running sim-ipaq simulator, and run

an initial set of bootloader commands, listed in the file "script-boot.txt". These commands are

required to initialize the Linux kernel memory and CRAMFS filesystem. Once the commands

complete, the Linux kernel will boot, after which the user can enter additional commands from

the platform console window.

References

[1] D. Brooks et al., “Wattch: A Framework for Architectural-Level Power Analysis
and Optimizations,” Proc. 27th Int. Symp. on Computer Architecture (ISCA27),
May 2000.

[2] N. Vijaykrishnan, et al., “Energy-Driven Integrated Hardware-Software
Optimizations Using SimplePower,” Proc. 27th Int. Symp. on Computer
Architecture, May 2000.

[3] G. Cai et al., “Architectural Level Power/Performance Optimization and Dynamic
Power Estimation,” Cool Chips Tutorial in conjunction with the 32nd Int. Symp. on
Microarchitecture, Nov. 1999.

[4] S. Wilton et al., “An Enhanced Access and Cycle Time Model for On-Chip
Caches,” Western Research Laboratory Research Report 93/5, July 1993.
50 of 54

[5] H. Mehta et al., “Energy Characterization based on Clustering,” Proc. 33rd Design
Automation Conf., June 1996.

[6] T. Austin et al., “SimpleScalar: An Infrastructure for Computer System
Modeling,” IEEE Computer, Vol. 35, pp. 59-67, Feb. 2002.

[7] B. Geuskens, et al., “Modeling Microprocessor Performance,” Kluwer Academic
Publishers, 1988.

[8] The MOSIS Service. http://www.mosis.com.

[9] Berkeley Predictive Technology Model, http://www-device.eecs.berkeley.edu/
~ptm/interconnect.html.

[10] P. E. Landman et al., “Activity-Sensitive Architectural Power Analysis,” IEEE
Transaction on CAD of Integrated Circuit and Systems, Vol. 15, No. 6, June 1996

[11] P. E. Landman et al., “Architectural Power Analysis: The Dual Bit Type Method,”
IEEE Transaction on VLSI Systems, Vol. 3, No. 2, June 1995.

[12] Z. Brazilai et al., “HSS: A High-Speed Simulator,” IEEE Trans. on CAD/ICAS,
July 1987.

[13] L. T. Wang et al., “SSIM: A Software Levelized Compiled-Code Simulator,” Proc.
24th Design Automation Conf., June 1987.

[14] M. K. Gowan et al., “Power Considerations in the Design of the Alpha 21264
Microprocessor,” Proc. of 35th Design Automation Conf., June 1998.

[15] J. Montanaro, et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor,”
IEEE Journal of Solid-State Circuits, Vol 31, Nov. 1996.

[16] K. Roy and S. Prasad, “Low-Power CMOS VLSI Circuit Design,” Wiley
Interscience publication, 2000.

[17] M. R. Guthaus et al., “MiBench: A Free, Commercially Representative Embedded
Benchmark Suite,” Proc. IEEE 4th Annual Workshop on Workload
Characterization, Dec. 2001.

[18] Standard Performance Evaluation Corporation. http://www.specbench.org.

[19] Intel 875 Chipset Datasheet — Platform Design Guide, ftp://download.intel.com/
design/chipsets/datashts/25252703.pdf.

[20] Microstrip Impedance Calculator, http://www.emclab.umr.edu/pcbtlc2/
microstrip.html

[21] Intel 875 Chipset Datasheet, ftp://download.intel.com/design/chipsets/datashts/
25252501.pdf.

[22] A. Bellaouar et al., “Low-Power Digital VLSI Design: Circuit and Systems,”
Kluwer Academic Publishers, 1996.

[23] K. Ghose and M. Kamble, “Reducing Power in Superscalar Processor Caches
using Subbanking, Multiple Line Buffers and Bit-line Segmentation,” Proc. Int.
Symp. on Lower Power Electronics & Design, Aug. 1999.
51 of 54

[24] R. Preston et al, “Design of an 8-wide superscalar RISC microprocessor with
simultaneous multithreading”, ISSCC Digest and Visuals Supplements, Feb. 2002.

[25] M. Hrishikesh, N. Jouppi, K. Farkas, D. Burger, S. Keckler, and P. Shivakumar.
The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays. Proc. the
29th Int’l Symp. on Computer Architecture, May 2002.

[26] S. Manne et al., “An Industrial Perspective on Low Power Processor Design,”
Cool Chips Tutorial in conjunction with the 32nd Int. Symp. on Microarchitecture,
Nov. 1999.

[27] Kim, T. Austin, T. Mudge, and D. Grunwald. Challenges for architectural level
power modeling. in Power Aware Computing. Millime and R. Grubbily ends.),
Kluwer Academic Publishers: Boston, MA, 2001.
52 of 54

Publications
1. Nam Sung Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M.

Condemner, N. Vijaykrishnan. Leakage Current: Moore's Law Meets Static Power.

Computer, vol. 36, no. 12, Dec. 2003, pp. 65-77.

2. D. Ernest, N. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw, T. Austin,

T. Mudge, and K. Flautner. Razor: A low-power pipeline based on circuit-level timing

speculation. 36th Ann. IEEE/ACM Symp. Microarchitecture (MICRO-36), Dec.

2003, pp. 7-18. [received best paper award]

3. N. Kim, K. Flautner, D. Blaauw, and T. Mudge. Circuit and microarchitectural tech-

niques for reducing cache leakage power. IEEE Trans. VLSI, 2003.

4. N. Kim, D. Blaauw, and T. Mudge. Leakage power optimization techniques for ultra

deep sub-micron multi-level caches. Proc. Int. Conf. of Computer Aided Design

(ICCAD-2003), San Jose, CA, Nov. 2003, pp. 627-632.

5. N. Kim and T. Mudge. Microarchitecture for a low power register file with reduced

register ports. Proc. of the Int. Symp. on Low Power Electronics and Design

(ISLPED), Seoul, Korea, Aug. 2003, pp. 384-389.

6. K. Flautner and T. Mudge. Vertigo: Automatic performance-setting for Linux. Proc. of

the 5th Operating Systems Design and Implementation (OSDI), Dec. 2002, pp. 105-

116.

7. D. Blaauw, S. Martin, T. Mudge, K. Flautner. Leakage current reduction in VLSI sys-

tems. Jour. of Circuits, Systems, and Computers, 11(6), 2002, pp. 621-636.

8. N. Kim, K. Flautner, D. Blaauw, and T. Mudge. Drowsy instruction caches: Leakage

power reduction using dynamic voltage scaling and cache sub-bank prediction. 35th

Ann. IEEE/ACM Symp. Microarchitecture (MICRO-35), Nov. 2002, pp. 219-230.

9. S. Martin, K. Flautner, D. Blaauw, and T. Mudge. Combined dynamic voltage scaling

and adaptive body biasing for lower power microprocessors under dynamic work-

loads. Proc. Int. Conf. of Computer Aided Design (ICCAD-2002), San Jose, CA, Nov.

2002, pp. 721-725.

10. K. Flautner, S. Reinhardt, and T. Mudge. Automatic performance setting for dynamic

voltage scaling. ACM Jour. Wireless Networks, vol. 8, no. 5, Sep. 2002, pp. 507-520.
53 of 54

11. K. Flautner, N. Kim, S. Martin, D. Blaauw, T. Mudge. Drowsy Caches: Simple tech-

niques for reducing leakage power. Proc. of the 29th Ann. Int. Symp. on Computer

Architecture, Anchorage Alaska, May 2002, pp. 148-157.

12. N. Kim, T. Austin, and T. Mudge. Low-energy data cache using sign compression and

cache line bisection. 2nd Annual Workshop on Memory Performance Issues (WMPI).

In conjunction with the 29th Ann. Int. Symp. on Computer Architecture, Anchorage

Alaska, May 2002.

13. N. Kim, T. Austin, T. Mudge, and D. Grunwald. Challenges for architectural level

power modeling. in Power Aware Computing, (R. Melhem and R. Graybill eds.), Klu-

wer Academic Publishers: Boston, MA, 2001.

14. M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown. MiBench: A

free, commercially representative embedded benchmark suite. IEEE 4th Annual

Workshop on Workload Characterization, (held in con-junction with 34th Ann. IEEE/

ACM Symp. Microarchitecture, Austin, TX), Dec. 2001, pp. 3-14.

15. K. Flautner, S. Reinhardt, and T. Mudge. Automatic performance setting for dynamic

voltage scaling. Proc. 7th Ann. Int. Conf. On Mobile Computing and Networking

(MOBICOM), Rome, Italy, July 2001, pp. 260-271.

16. T. Mudge. Power: A first class design constraint. Computer, vol. 34, no. 4, April 2001,

pp. 52-57.
54 of 54

	AFRL-IF-WP-TR-2004-1505copy.pdf
	1. Introduction
	2. Infrastructure for Microarchitectural Power Simulation
	2.1 Where to Get the Source Code
	2.2 How to Compile
	2.3 How to Run the Simulator

	3. MOSFET Capacitance Component
	3.1 Model
	3.2 Implementation

	4. Interconnect Capacitance and Resistance
	4.1 Models
	4.2 Implementation

	5. General Circuits
	5.1 Models
	5.2 Implementation

	6. Memory Power Model
	6.1 Models
	6.2 Implementation
	6.3 Calibration

	7. Datapath and Execution Unit
	7.1 Implementation
	7.2 Calibration

	8. Clock Distribution Tree
	8.1 Models
	8.2 Implementation

	9. I/O
	9.1 Model
	9.2 Implementation

	10. Conclusion

